By (Mrs.) C. G. Le Fèvre, R. J. W. Le Fèvre, and A. J. Williams
The molar Kerr constants, at infinite dilution in carbon tetrachloride, of ethyl and higher n-alkyl bromides up to $\mathrm{C}_{18} \mathrm{H}_{37} \mathrm{Br}$ appear almost independent of molecular size and weight. Using $b_{\mathrm{L}}^{\mathrm{C}-\mathrm{Br}}=5.30$ and $b_{\mathrm{T}}^{\mathrm{C}}-\mathrm{Br}=2.70$ with a C $-\mathrm{C}-\mathrm{Br}$ angle of 109°, the $\mathrm{m}_{\mathrm{m}} K$ calculated for ethyl bromide is $100 \cdot 1 \times 10^{-12}$ versus $100 \cdot 6 \times 10^{-12}$ by experiment. Numerically satisfactory predictions of the ${ }_{\mathrm{m}} K$'s for bromides with five or more carbon atoms can be based on either planar, zig-zag, or helical arrangement of the $\mathrm{C}_{n} \mathrm{H}_{2 n+1}$ groups.

This Paper adds measurements of the molar Kerr constants ${ }_{\infty}\left({ }_{m} K_{2}\right)$ of the n-alkyl bromides of the previous Paper at infinite dilution in carbon tetrachloride at 25°; it proceeds inter alia to examine whether these ${ }_{\infty}\left({ }_{m} K_{2}\right)$'s can be calculated a priori from a knowledge of the longitudinal, $b_{\mathrm{L}}^{\mathrm{C}-\mathrm{Br}}$, and transverse, $b_{\mathrm{T}}^{\mathrm{C}-\mathrm{Br}}$, polarisabilities of the $\mathrm{C}-\mathrm{Br}$ link, together with other information drawn from electric birefringence data on the related n-hydrocarbons.

Table 1
Electric double refractions and refractive indices of solutions of n-bromides in
carbon tetrachloride

$10^{5} w_{2}$	$10^{7} \Delta B$	$10^{4} \Delta n$	$10^{5} w_{2}$	$10^{7} \Delta B$	$10^{4} \Delta n$	$10^{5} w_{2}$	$10^{7} \Delta B$	$10^{4} \Delta n$
Ethyl bromide			n-Hexyl bromide			n-Decyl bromide		
611	0.050	-1	224	0.015	ca. 0	556	0.034	ca. 0
887	$0 \cdot 076$	-2	392	0.022	,, 0	1162	0.049	, 0
1096	0.085	-2	809	0.043	-1	1178	0.051	,, 0
1130	$0 \cdot 096$	-2	980	0.058	-1	1667	0.066	,, 0
2090	$0 \cdot 164$	-6	1024	$0 \cdot 060$	-1	3439	$0 \cdot 146$, 0
5560	0.342	-13	3317	$0 \cdot 186$	-2	6669	0.284	-2
n-Propyl bromide			n-Heptyl bromide			n-Dodecyl bromide		
714	$0 \cdot 060$	-2	276	0.015	ca. 0			
1380	0.104	-2	921	0.051	,, 0	841	0.031	ca. 0
1443	$0 \cdot 109$	-2	1162	0.067	," 0	2228	0.082	" 0
1461	$0 \cdot 111$	-3	1817	$0 \cdot 103$	-1	2679	0.099	, 0
2131	$0 \cdot 162$	-4	3296	0.183	-3	2876	$0 \cdot 106$	-1
2143	$0 \cdot 162$	-4	3892	0.216	-4	2956 $\mathbf{3 1 0 4}$	$\begin{aligned} & 0 \cdot 108 \\ & 0 \cdot 113 \end{aligned}$	-1 -2
n-Butyl bromide			n-Octyl bromide					
590	0.046	-1	158	0.006	ca. 0	n-Hexadecyl bromide		
999	0.074	-3	812	0.042	, 0	512	0.018	ca. 0
1942	0.137	-4	1550	0.076	,, 0	901	0.029	,, 0
2263	$0 \cdot 168$	-	1609	0.082	, 0	1716	0.055	", 0
2824	-	-6	2710	$0 \cdot 133$,, 0	1735	0.056	", 0
3318	\square	-6	3665	0.187	-2	3072	0.090	,', 0
4009	$0 \cdot 275$	-	3857	0.195	-2	3543	0.104	
4173	$0 \cdot 276$	-	6977	$0 \cdot 334$	-4			
4661		7	n-Nonyl bromide			n-Octadecyl bromide		
4852	$0 \cdot 347$	-						
			241	0.003	ca. 0	967	0.016	ca. 0
n-Pentyl bromide			462	0.018	,, 0	909	0.025	,, 0
384	0.023	ca. 0	551	0.023	,, 0	1137	0.039	-1
809	$0 \cdot 054$,, 0	571	0.029	,', 0	1150	0.037	-1
1371	0.092	-2	650	0.028	,, 0	1178	0.035	-
1698	0.119	-3	767	0.032	-1	1872	0.058	-1
1725	$0 \cdot 105$	-2	1021	0.041	-1	2040	0.065	-1
1967	$0 \cdot 134$	-2	1036	0.045	-1	2190	0.064	-
2626	$0 \cdot 180$	-4	1526	$0 \cdot 068$	-	2591	0.081	-2
2684	0.179	-3	2248	0.097	-	2553	-	-2
2771	$0 \cdot 180$	-3	2879	-	-2	2771	0.086	-
3816	$0 \cdot 257$	-5	3049	-	-3	2782	0.081	-2

Practical procedures, definitions of symbols, details of calculation methods, etc., follow those described by Le Fèvre and Le Fèvre. ${ }^{1}$ The changes in the Kerr constant and refractive index caused in carbon tetrachloride by a weight fraction w_{2} of solute bromide are listed in Table 1 under ΔB and Δn, respectively. Since, in general, graphs of ΔB versus w_{2} are curved while those of Δn versus w_{2} are rectilinear, the ΔB 's are fitted by least squares to equations of the form $(\Delta B)_{w_{2}}=P w_{2}+Q w_{2}{ }^{2}$, and the Δn 's are averaged as $S=\Sigma \Delta n / \Sigma w_{2}$. Table 2 shows values of P, Q, and S for the various bromides. As explained in ref. 1 , it is assumed that at high dilutions, approaching $v_{2}=0$, both properties are rectilinear with w_{2}, i.e.,

$$
B_{12}=B_{1}\left(1+w_{2} \delta\right), \text { and } n_{12}=n_{1}\left(1+w_{2} \gamma\right),
$$

so that the desired coefficients δ and γ, appropriate to infinite dilution, are given by $\mathrm{P}=B_{1} \delta$ and $\mathrm{S}=n_{1} \gamma($ cf. Table 3$)$; then:

$$
\infty\left({ }_{\mathrm{m}} K_{2}\right)=M_{2}\left[\mathrm{~s} K_{1}\left(1-\beta+\gamma+\delta-\mathrm{H} \gamma-\mathrm{J} \alpha \varepsilon_{1}\right)\right] .
$$

The required density and dielectric constant factors (β and $\alpha \varepsilon_{1}$) are in the preceding Paper;

[^0]other data needed for carbon tetrachloride at 25° and with sodium D -light are: $B_{1}=$ $0.070 \times 10^{-7}, n_{1}=1.4575, \mathrm{H}=2.060, \mathrm{~J}=0.4731,{ }_{\mathrm{s}} K_{1}=0.749 \times 10^{-14}$. (Subscripts 1,2 , and 12 denote, respectively, solvent, solute, and solution.)

Table 2
Coefficients P and Q in equations fitted by least squares to observations in Table 1;
also values of $\mathrm{S}=\Sigma \Sigma \Delta n / \Sigma w_{2}$

n -Bromide	P	Q	$-10^{4} \mathrm{~S}$	n-Bromide	P	Q	$-10^{4} \mathrm{~S}$
Ethyl..............	8.767	$-4 \cdot 70$	229	Octyl.	$5 \cdot 21{ }_{2}$	$-5 \cdot 87$	47
Propyl	$6 \cdot 908$	-16.9	183	Nonyl	$4 \cdot 19{ }_{2}$	$+7 \cdot 18$	60
Butyl..............	$7 \cdot 25{ }_{2}$	$-7 \cdot 12$	188	Decyl	$4 \cdot 26{ }_{3}$	$+0 \cdot 2_{4}$	10
Amyl	$6.57{ }_{6}$	$+3 \cdot 87$	80	Dodecyl	$3 \cdot 75{ }_{7}$	$-3 \cdot 2{ }_{1}$	27
Hexyl	$5 \cdot 80{ }_{5}$	$-5 \cdot 89$	82	Hexadecyl	$3 \cdot 45{ }_{3}$	$-15 \cdot 4$	ca. 0
Heptyl	$5 \cdot 72_{4}$	$-4 \cdot 66$	89	Octadecyl...	3.155	$-4 \cdot 28$	40

Table 3

Solute	$\alpha \varepsilon_{1}$	- β	- γ	δ	$\infty\left({ }_{m} K_{2}\right) \times 10^{12}$
$\mathrm{CH}_{3} \mathrm{Br}$	$5 \cdot 72$	-0.051	0.028	$74 \cdot 3$	51.6
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Br}$	6.44	0.084	0.016	$125 \cdot 2$	$100 \cdot 6$
$\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{Br}$	$5 \cdot 87$	$0 \cdot 175$	0.013	$113 \cdot 0$	$102 \cdot 6$
$\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Br}$	$5 \cdot 23$	$0 \cdot 249$	0.013	103.6	105•1
$\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{Br}$	$4 \cdot 76$	0.297	0.006	93.94	$105 \cdot 2$
$\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{Br}$	$4 \cdot 37$	$0 \cdot 351$	0.006	82.92	101.7
$\mathrm{C}_{7} \mathrm{H}_{15} \mathrm{Br}$	$3 \cdot 99$	$0 \cdot 394$	0.006	81.77	$109 \cdot 0$
$\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{Br}$	$3 \cdot 68$	$0 \cdot 4125$	0.003	$74 \cdot 46$	$107 \cdot 2$
$\mathrm{C}_{9} \mathrm{H}_{19} \mathrm{Br}$	$3 \cdot 33$	0.448	0.004	59.89	$92 \cdot 8$
$\mathrm{C}_{10} \mathrm{H}_{21} \mathrm{Br}$	$3 \cdot 07$	$0 \cdot 489$	0.001	60.90	$100 \cdot 9$
$\mathrm{C}_{12} \mathrm{H}_{25} \mathrm{Br}$	$2 \cdot 82$	0.533	0.002	$53 \cdot 67$	$100 \cdot 6$
$\mathrm{C}_{16} \mathrm{H}_{33} \mathrm{Br}$	2.26	0.597	ca. 0	$49 \cdot 33$	114.0
$\mathrm{C}_{18} \mathrm{H}_{37} \mathrm{Br}$	2.07	$0 \cdot 601$	0.003	$45 \cdot 07$	114•1

Discussion \dagger

The $\infty\left({ }_{m} K_{2}\right)$'s of ethyl and subsequent bromides in Table 3 fall between the limits 92.8×10^{-12} for $\mathrm{C}_{9} \mathrm{H}_{19} \mathrm{Br}$ and 114.1×10^{-12} for $\mathrm{C}_{18} \mathrm{H}_{37} \mathrm{Br}$; their mean value is 104×10^{-12}. They appear nearly independent of molecular size or weight, and this together with the near-constancy of the dipole moments throughout the series implies that the ${ }_{\mathrm{m}} K$'s of higher bromides might be calculable a priori provided the polarisability ellipsoid for ethyl bromide can be established.

The Molar Kerr Constant and Principal Polarisabilities of Ethyl Bromide.-In this molecule the $\mathrm{C}-\mathrm{C}-\mathrm{Br}$ angle ${ }^{2}$ is reputed to be $109^{\circ} \pm 2^{\circ}$; in what follows we take it as tetrahedral and proceed to calculate ${ }^{3,4} b_{1}, b_{2}$, and b_{3} for ethyl bromide from the longitudinal and transverse polarisabilities of the $\mathrm{C}-\mathrm{H}, \mathrm{C}-\mathrm{C}$, and $\mathrm{C}-\mathrm{Br}$ bonds, with the resultant moment directed along the $\mathrm{C}-\mathrm{Br}$ link. For $\mathrm{C}-\mathrm{H}, b_{\mathrm{L}}=b_{\mathrm{T}}=b_{\mathrm{V}}=0.64$, and for $\mathrm{C}-\mathrm{C}, b_{\mathrm{L}}=0.99$, $b_{\mathrm{T}}=0.27$ (cf. ref. $1 a$). There is some doubt concerning the proper values for $\mathrm{C}-\mathrm{Br}$ in the structural environment of ethyl bromide. Table 4 shows the results of using data from (a) methyl bromide, ${ }^{1 c}(b) t$-butyl bromide, ${ }^{1 a}$ and (c) cyclopentyl bromide; ${ }^{1 e}$ of these, set (c) yields an ${ }_{\mathrm{m}} K$ calc. (100×10^{-12}) in satisfactory agreement with the $\mathrm{m}_{\mathrm{m}} K$ found (101×10^{-12}). The total, $b_{1}+b_{2}+b_{3}=21.83$, corresponds to an electronic polarisation of 18.36 c.c., so that ${ }_{\mathrm{E}} P / R_{\mathrm{D}}$ is 0.96_{3}, i.e., well within the range for such quotients. Complete certainty regarding ${ }_{E} P$ is never possible. The molecular refractions listed for ethyl bromide by Vogel ${ }^{5}$ are not quite rectilinear if plotted against $1 / \lambda^{2}$ and give ${ }_{\mathrm{E}} P=R_{\infty}$ as 18.52 c.c. from R_{C} and R_{G}, or 18.48 c.c. from R_{D} and R_{F}; the mean R_{∞} is 18.50 c.c. whence $b_{1}+b_{2}+b_{3}=$
\dagger Molecular and bond polarisabilities, b_{i}, are throughout expressed in 10^{-24} c.c. units.
${ }^{2}$ Chem. Soc. Special Publ. No. 11, ed. Sutton, London, 1958, M 133.
${ }^{3}$ Ref. $1 d$, p. 2486.
${ }^{4}$ J. M. Eckert and R. J. W. Le Fèvre, J., 1962, 1081.
${ }^{5}$ A. I. Vogel, J., 1943, 636.
22.00. From Le Fèvre and Steel's table ${ }^{6}$ of bond electronic polarisations, $P P$ and Σb_{i} are 18.54 and 22.04×10^{-24} c.c., respectively.

Table 4
Calculations of b_{1}, b_{2}, b_{3}, and ${ }_{\mathrm{m}} K$ for ethyl bromide * using $\mathrm{C}-\mathrm{Br}$ polarisabilities
from three different environments

Source \dagger	$b_{\mathrm{L}}^{\mathrm{G}-\mathrm{Br}}$	$b_{\mathrm{T}}^{\mathrm{C}-\mathrm{Br}}=b_{\mathrm{v}}^{\mathrm{C}-\mathrm{Br}}$	b_{1}	b_{2}	b_{3}	$10^{12}{ }_{\mathrm{m}} K_{2}$ (calc.)	θ°
a	$4 \cdot 65$	3.10	8.25	$7 \cdot 16$	$6 \cdot 57$	$55 \cdot 2$	12
b	$5 \cdot 98$	$2 \cdot 58$	$9 \cdot 55$	6.67	6.05	133	$4 \cdot 5$
c	$5 \cdot 30$	$2 \cdot 70$	$8 \cdot 87_{5}$	6.78	$6 \cdot 17$	$100 \cdot 1$	$6 \cdot 3$

If the small angle between b_{1} and $\mathrm{C}-\mathrm{Br}$ be ignored and the assumption be allowed that $\mu_{\text {resultant }}$ acts parallel to the b_{1} axis, estimates of $b_{1}{ }^{\mathrm{EtBr}}, b_{2}{ }^{\mathrm{EtBr}}$, and $b_{3}{ }^{\mathrm{EtBr}}$ can be extracted ${ }^{7}$ from the observed $\infty\left({ }_{m} K_{2}\right)$ and the electronic polarisation, the dipole moment, the depolarisation factor for light scattered transversely by ethyl bromide, and the isothermal compressibility of this substance. Data for the last two properties have been recorded by Krishnan ${ }^{8}$ (cf. also ref. 9 for equations and definitions). Proceeding as in ref. 7, slightly different values of the semi-axes are produced (Table 5) according to the ${ }_{\mathrm{E}} P$ used to give the total $b_{1}+b_{2}+b_{3}$; however, the b_{i} 's forecast in Table 4 (source c) from bond polarisabilities are seen to be close to those in Table 5, a fact which encourages belief that the longitudinal and transverse polarisabilities of the $\mathrm{C}-\mathrm{Br}$ bond in ethyl bromide have been correctly chosen, and that the deviation of $\mu_{\text {resultant }}$ from the b_{1} direction is small. In all calculations below involving n -alkyl bromides we have accordingly used $b_{\mathrm{L}}^{\mathrm{C}}-\mathrm{Br}=5 \cdot 30$ and $b_{\mathrm{T}}^{\mathrm{G}-\mathrm{Br}}=b_{\mathrm{V}}^{\mathrm{G}-\mathrm{Br}}=\mathbf{2 . 7 0}$.

Table 5
Polarisability semi-axes for ethyl bromide estimated from $\infty\left({ }_{m} K_{2}\right),{ }_{\mathrm{E}} P$, and light-scattering data

${ }_{\mathrm{E}} P$ (c.c.)	18.36	$18 \cdot 50$	18.54	$b_{2} \ldots \ldots \ldots \ldots \ldots \ldots$.	6.79	$6 \cdot 89$	6.92
$b_{1}+b_{2}+b_{3}$	21.83	22.00	22.04	$b_{3} \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	$6 \cdot 18$	$6 \cdot 19$	$6 \cdot 19$
b_{1}	$8 \cdot 86$	8.92	8.93				

Conformation and Polarisability Semi-axes of n-propyl Bromide.-Table 6 gives details of some of the computations made for this molecule in the following conformations: A, a planar trans zig-zag; B , the $c i$ form of A ; and C , various rotational isomers generated from A by turning the plane containing the $\mathrm{CH}_{2}-\mathrm{CH}_{3}$ bond about the $\mathrm{CH}_{2}-\mathrm{CH}_{2}$ axis by α°.

The ${ }_{\mathrm{m}} K$'s predicted for A and B are seen to exceed the observed value; when the angles between b_{1} and the resultant moment are treated as zero the calculated ${ }_{m} K$'s become only slightly higher (138.7×10^{-12} and 117.6×10^{-12}, respectively). The ${ }_{m} K$'s for conformations of type C fall from 134.6×10^{-12} when $\alpha=15^{\circ}$ to 103.7×10^{-12} when $\alpha=60^{\circ}$; the ${ }_{\mathrm{m}} K$ from experiment is 102.7×10^{-12}.

Prediction of ${ }_{\mathrm{m}} K^{\prime}$'s of Higher Members of the n-Alkyl Bromide Series.-Given the above information for ethyl bromide, the ${ }_{\mathrm{m}} K$'s of higher homologues are calculable with fair success by distributing the polarisability increments appropriate for the additional $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{H}$ links equally over $b_{1}{ }^{\mathrm{EtBr}}, b_{2}{ }^{\mathrm{EtBr}}$, and $b_{3}{ }^{\mathrm{EtBr}}$; this is equivalent to supposing that each entrant $\mathrm{C}-\mathrm{C}$ bond is introduced at the half-tetrahedral angle to the principal axes in the molecule being expanded. Numerical results are shown in Table 7. The calculated and observed ${ }_{m} K$'s diverge with the $\mathrm{C}_{9}, \mathrm{C}_{16}$, and C_{18} members, but among the remaining eight the disagreements do not exceed the uncertainties often experienced with direct measurements.

[^1]Table 6
Polarisability semi-axes, moment components, and molar Kerr constants calculated for the conformations A, B, and C of n -propyl bromide

Conformation	Principal semi-axes	$\underbrace{\text { Direction cosines with }}$			Moment components	$\begin{gathered} 10^{12}{ }_{\mathrm{m}} K \\ \text { (calc.) } \end{gathered}$
		X	\overbrace{Y}	Z		
A	$b_{1}=11 \cdot 15$	-0.4184	$+0.9083$	0	$\mu_{1}=-1.964$	
	$b_{2}=8.34$	+0.9083	+0.4184	0	$\mu_{2}=-0.133$	137.9
	$b_{3}=7.72$	0	0	1	$\mu_{3}=0$	
B	$b_{1}=10.84$	-0.2861	+0.9582	0	$\mu_{1}=-1.966$	
	$b_{2}=8.65$	+0.9582	+0.2861	0	$\mu_{2}=-0.123$	$117 \cdot 1$
	$b_{3}=7.72$	0	0	1	$\mu_{3}=0$	
$\mathrm{C} \uparrow$	$b_{1}=10.72$	+0.4544	+0.8827	+0.1199	$\mu_{1}=-1.940$	
	$b_{2}=8.35$	+0.8896	-0.4426	-0.1130	$\mu_{2}=+0.220$	103.7
	$b_{3}=8.16$	+0.0467	-0.1579	$+0.9863$	$\mu_{3}=+0.261$	

* The X and Y axes are in the $\mathrm{Br}-\mathrm{C}-\mathrm{C}$ plane with X parallel to the $\mathrm{CH}_{2}-\mathrm{CH}_{2}$ bond. \dagger With $\alpha=60^{\circ}$.

Table 7
Molar Kerr constants predicted by assuming isotropic additions of $\mathrm{C}-\mathrm{CH}_{2}$ units to b_{1}, b_{2}, and b_{3} of ethyl bromide

	n-Bromide	b_{1}	b_{2}	b_{3}	$10_{\mathrm{m}}{ }^{12} \mathrm{~K}$ (calc.)	$10^{12}{ }_{\mathrm{m}} K$ (obs.)
$\mathrm{C}_{2} \mathrm{H}_{5}$	8.88	$6 \cdot 79$	$6 \cdot 17$	101.7	$100 \cdot 6$
$\mathrm{C}_{3} \mathrm{H}_{7}$	$10 \cdot 67$	$8 \cdot 58$	7.96	$105 \cdot 9$	$102 \cdot 6$
$\mathrm{C}_{4} \mathrm{H}_{3}$	$12 \cdot 46$	$10 \cdot 37$	$9 \cdot 75$	$104 \cdot 8$	105•1
$\mathrm{C}_{5} \mathrm{H}_{11}$		$14 \cdot 25$	$12 \cdot 16$	11.54	$104 \cdot 8$	$105 \cdot 2$
$\mathrm{C}_{6} \mathrm{H}_{13}$		16.04	13.95	$13 \cdot 33$	$105 \cdot 9$	$101 \cdot 7$
$\mathrm{C}_{7} \mathrm{H}_{15}$		$17 \cdot 83$	$15 \cdot 74$	$15 \cdot 12$	$105 \cdot 9$	$109 \cdot 0$
$\mathrm{C}_{8} \mathrm{H}_{17}$		$19 \cdot 62$	17.53	16.91	$104 \cdot 8$	$107 \cdot 2$
$\mathrm{C}_{9} \mathrm{H}_{19}$		21.41	19.32	$18 \cdot 70$	$102 \cdot 8$	$92 \cdot 8$
$\mathrm{C}_{10} \mathrm{H}_{21}$		$23 \cdot 20$	21.11	$20 \cdot 49$	101.7	$100 \cdot 9$
$\mathrm{C}_{12} \mathrm{H}_{25}$		26.78	$24 \cdot 69$	24.07	$103 \cdot 8$	$100 \cdot 6$
$\mathrm{C}_{16} \mathrm{H}_{33}$		$33 \cdot 94$	31.85	31.23	$104 \cdot 8$	114.0
$\mathrm{C}_{18} \mathrm{H}_{37}$		37-52	$\mathbf{3 5 \cdot 4 3}$	34.81	$103 \cdot 8$	114•1

Table 8
Anisotropic polarisabilities of n-alkyl groups deduced from data on n-paraffins

	$10^{7} B^{20}$	$n_{\text {D }}{ }^{20}$	$d_{4}{ }^{20}$	ε^{20}	$10^{12}{ }_{\mathrm{m}} K_{\text {liq }}$	$b_{\text {L }}^{\text {alkyl }}$	$b_{\text {T }}^{\text {alky }}$
Pentane	$0 \cdot 055$	$1 \cdot 358$	$0 \cdot 6263$	1.844	$1 \cdot 39$	$10 \cdot 19$	8.52
Hexane	0.066	$1 \cdot 375$	0.6595	1.890	$1 \cdot 70$	$12 \cdot 10$	$10 \cdot 26$
Heptane	0.076	1.388	$0 \cdot 6837$	1.924	$2 \cdot 14$	$14 \cdot 04$	11.97
Octane.	0.087	$1 \cdot 397$	0.7028	1.948	$2 \cdot 66$	15.98	13.69
Nonane	0.094	1.405	0.7174	1.972	$3 \cdot 10$	17.88	$15 \cdot 42$
Decane	$0 \cdot 103$	1.412	0.7300	1.991	$3 \cdot 66$	19.82	17.14
Dodecane	$0 \cdot 125$	$1 \cdot 4215$	0.7488	$2 \cdot 014$	$5 \cdot 08$	$23 \cdot 74$	$20 \cdot 55$

Alternative Calculations using Anisotropies of Alkyl Groups.-A less empirical approach to the problem could start from the n-paraffins, the Kerr constants B for which as liquids have been recorded for n-pentane and above by Stuart. ${ }^{10}$ Together with appropriate refractive indices, densities, and dielectric constants from the literature, ${ }^{11}$ these yield the molar quantities in the sixth column of Table 8. Assuming that the polarisability ellipsoids of n-hydrocarbons have two equal semi-axes, and using data already quoted for the $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{H}$ bonds, the apparent longitudinal and transverse polarisabilities of the alkyl groups emerge as in columns 7 and 8 of Table 8.

The smooth increases per C-C link [ca. 2 for $b_{\mathrm{L}}^{\text {alky1 }}$ and 1.7 for $b_{T}^{\text {alkyl }}$], thus revealed, strongly suggest a regularity of conformation throughout the series. Two attempts to recognise this regularity have been made. The first supposes that these alkyl groups adopt flat all-trans arrangements, with every $\mathrm{C}-\mathrm{C}-\mathrm{C}$ angle at the tetrahedral value; then each $\mathrm{C}-\mathrm{C}$ bond should contribute 0.75 to $b_{\mathrm{L}}^{\text {alkyl }}$ and 0.39 to $b_{\mathrm{T}}^{\text {alkyl }}$, and each $\mathrm{C}-\mathrm{H}$ bond 0.64 to
${ }^{10}$ H. A. Stuart, " Die Struktur des Freienmoleküls," Springer, Berlin, Göttingen, Heidelberg, 1952, p. 460 .
${ }_{11}$ J. Timmermans, "Physico-Chemical Constants of Pure Organic Compounds," Elsevier, Amsterdam, 1950.
both the longitudinal and transverse directions. Semi-axes as in Table 9 are thus obtained.

Table 9

	n	5	6	7	8	9	10	12	16	18
$b_{\text {L }}^{\text {alky }}$		$10 \cdot 04$	12.07	$14 \cdot 10$	16.13	$18 \cdot 16$	$20 \cdot 19$	$24 \cdot 25$	32.37	36.43
$b_{\text {m }}^{\text {alky }}$		$8 \cdot 60$	$10 \cdot 27$	11.94	$13 \cdot 61$	$15 \cdot 28$	16.95	$20 \cdot 29$	26.97	30.31

Values for the $\mathrm{C}_{5}, \mathrm{C}_{6}$, and C_{7} members in Table 9 are close to those deduced from observations (Table 8); however, with the longer alkyl radicals an excessive anisotropy is forecast. The second attempt is more successful with the higher alkyls; we consider the preceding zig-zag twisted into a helix which repeats itself after eight $\mathrm{C}-\mathrm{C}$ links. According to Mumford ${ }^{12}$ each $\mathrm{C}-\mathrm{C}$ bond adds $1.20 \AA$ to the length of a n-alkane; therefore in the present problem all the $\mathrm{C}-\mathrm{C}$ links are taken as inclined towards the central axis of the helix at an angle of 38.8°, i.e., $\cos ^{-1}(1 \cdot 20 / 1 \cdot 54)$. One $\mathrm{C}-\mathrm{C}$ should thus contribute 0.707 to $b_{\mathrm{L}}^{\text {alkyl }}$ and $0 \cdot 411$ to $b_{T}^{\text {alkyl }}$; Table 10 shows predictions on this basis (after additions of values for the $\mathrm{C}-\mathrm{H}$ bonds).

Table 10
Anisotropic polarisabilities predicted for helical n-alkyl groups

	$n:$	5	6	7	8	9	10	12	16	18
$b_{1}^{\text {alkyl }}$	\ldots	$9 \cdot 8_{7}$	$11 \cdot 8_{6}$	$13 \cdot 8_{4}$	$15 \cdot 8_{3}$	$17 \cdot 8_{2}$	$19 \cdot 8_{1}$	$23 \cdot 7_{8}$	$\left(31 \cdot 7_{3}\right)$	$\left(35 \cdot 7_{0}\right)$
$b_{\mathrm{T}}^{\text {alkyl }}$	\ldots	$8 \cdot 6_{8}$	$10 \cdot 3_{8}$	$12 \cdot 0_{7}$	$13 \cdot 7_{6}$	$15 \cdot 4_{5}$	$17 \cdot 1_{4}$	$20 \cdot 5_{3}$	$\left(27 \cdot 2_{9}\right)$	$\left(30 \cdot 6_{7}\right)$

Agreement between the polarisabilities in Table 10 with those from experiment in Table 8 improves with the size of the alkyl group. Through the absence of dielectric constant data for $\mathrm{C}_{16} \mathrm{H}_{34}$ and $\mathrm{C}_{18} \mathrm{H}_{38}$, polarisabilities for the n-cetyl and n-octadecyl groups are omitted from Table 8; the bracketed values in Table 10 are obtained by calculation and cannot be compared with observations directly on the hydrocarbons.

Table 11				
Calculated ${ }_{\mathrm{m}} K^{\prime}$ s assuming planar trans-conformations of n-alkyl groups				
$10^{12} \mathrm{~K}$ (calc.)				
n in $\mathrm{C}_{n} \mathrm{H}_{2 n+1} \mathrm{Br}$	$\beta=0^{\circ}$	$\beta=40^{\circ}$	$\beta=45^{\circ}$	$10^{12} K$ (obs.)
5	$159 \cdot 4$	$115 \cdot 3$	$100 \cdot 5$	$105 \cdot 2$
6	$151 \cdot 2$	$106 \cdot 7$	$89 \cdot 5$	$101 \cdot 7$
7	$184 \cdot 6$	116.5	94.4	109.0
8	$173 \cdot 6$	104.1	82.2	107.2
9	$203 \cdot 3$	$113 \cdot 8$	$85 \cdot 6$	$92 \cdot 8$
10	-	102.0	$74 \cdot 2$	$100 \cdot 9$
12	-	$105 \cdot 9$	$70 \cdot 5$	$100 \cdot 6$
16	-	$112 \cdot 3$	-	114.0
18	-	$115 \cdot 1$	59.6	$114 \cdot 1$

Principal polarisabilities, and hence molar Kerr constants, can be computed from the data of Tables 9 and 10 by tensorially adding the semi-axes adopted above for the $\mathrm{C}-\mathrm{Br}$ bond. Table 11 refers to the attachment of $\mathrm{C}-\mathrm{Br}$ to the flat all-trans alkyl groups of Table 9 ; the angle β denotes the rotations of the $\mathrm{Br}-\mathrm{C}_{(1)}-\mathrm{C}_{(2)}$ plane about the $\mathrm{C}_{(1)}-\mathrm{C}_{(2)}$ line (so that $\beta=0$ for a wholly planar zig-zag molecule). Calculations using the methods of ref. 4 have been carried through with $\beta=0,10,30,35,40,45$, and 60°, but for brevity the results of only three of these are shown. In all cases values of β which make ${ }_{\mathrm{m}} K$ (calc.) $=$ ${ }_{\mathrm{m}} K$ (obs.) exist within the range $40^{\circ} \pm 5^{\circ}$; models having $\beta=0^{\circ}$ produce ${ }_{\mathrm{m}} K$'s which are too large, and the excess becomes greater as the series is ascended.

In Table 12 we utilise the alkyl-group polarisabilities of Table 10 . The angles α between the $\mathrm{C}-\mathrm{Br}$ links and the helical axes may lie, because of rotations about the $\mathrm{C}_{(1)}-\mathrm{C}_{(2)}$ bond, between roughly 30 and 110°; calculations have therefore been made for various α 's within this range.

[^2]Table 12
Calculated ${ }_{1 n} K$'s assuming helical conformations of n-alkyl groups

$\stackrel{n \text { in }}{\mathrm{C}_{n} \mathrm{H}_{2^{n+1}} \mathrm{Br}}$	Angle α°							α^{*}
	62	60	57	54	50	45	39	
5	$93 \cdot 6$	101.0	$102 \cdot 4$	102.5	$105 \cdot 3$	113.9	-	50
6	-	$91 \cdot 1$	$98 \cdot 8$	$104 \cdot 5$	$112 \cdot 1$	$119 \cdot 0$	$135 \cdot 2$	55
7	93-4	$106 \cdot 6$	$107 \cdot 3$	$109 \cdot 2$	116.0	-	-	55
8	$78 \cdot 6$	-	-	$91 \cdot 9$	98.8	$113 \cdot 1$	-	47
9	$96 \cdot 7$	$104 \cdot 7$	113.0	$114 \cdot 3$	126.8	-	-	65
10	-	$93 \cdot 9$	$100 \cdot 7$	$103 \cdot 7$	113.5	-	-	56
12	96.5	$105 \cdot 1$	114.6	123.7	137.9	-	-	59
16	-	86.3	$94 \cdot 1$	102.5	118.8	-	--	51
18	-	$94 \cdot 8$	106.1	$117 \cdot 2$	139.9	-	-	56

University of Sydney, N.S.W., Australia.
[Received, September 15th, 1964.]

[^0]: ${ }^{1}$ C. G. Fèvre and R. J. W. Le Fèvre, (a) Rev. Pure Appl. Chem. (Australia), 1955, 5, 261; (b) J., 1953, 4041; (c) J., 1954, 1577; (d) ch. XXXV in " Physical Methods of Organic Chemistry," ed. Weissberger, Interscience, New York, London, 3rd edn., vol. I, p. 2459; (e) J., 1956, 3549.

[^1]: ${ }^{6}$ R. J. W. Le Fèvre and K. D. Steel, Chem. and Ind., 1961, 670.
 "Ref. 1d, p. 2491, where the equation given for b, should be amended to contain the term $\pm\left(6 \mathrm{D}-3 \mathrm{C}^{2}\right)^{0.5} / 6$.
 ${ }^{8}$ Krishnan, Phil. Mag., 1925, 50, 697.
 ${ }^{9}$ R. J. W. Le Fèvre and B. Purnachandra Rao, J., 1957, 3644.

[^2]: 12 S. A. Mumford, J., 1952, 4897.

